EQUATIONS WORKSHEET

O OR X WILD (JS ONLY)

PRINCIPLE

0 or x wild variation: The 0 or x cube may represent any numeral or operation on the cubes, but it must represent the same numeral or operation everywhere it occurs (Goal and Solution). Each Solution-writer must specify in writing the interpretation of the 0 or x cube if it stands for anything other than itself in his Solution. The player selecting this variation specifies whether 0 or x (but not both) is wild for the shake.
For examples of 0 wild, see worksheets $\mathbf{7 H}, 7 \mathbf{I}$, and $\mathbf{7 J}$.

EXAMPLES

1. A Goal of $6 x$ may be interpreted as $60,61,62, \ldots, 69$. There is no way the x may be interpreted as an operation sign.
2. The Goal 4×3 may be $4 \times 3,4+3,4-3,4 \div 3$, or $4 \sqrt{ } 3$. The x may be a digit only if the exponent variation is chosen, and the 3 is the selected color.
3. Suppose the Goal is $7 \times 2 \times 3$. Since both x 's must represent the same symbol, this Goal may be $7+2+3,7-2-3,7 \div 2 \div 3,7 \times 2 \times 3,7 * 2 * 3$, or $7 \sqrt{ } 2 \sqrt{ } 3$. x may not be a digit.

X WILD IN COMBINATION WITH OTHER VARIATIONS

1. Sideways: There is no way to tell if an x cube in the Goal is sideways. The Goal $x \div 3$ may be $(1 / 2) \div 3$ (or $2 \div 3$), ($1 / 3$) $\div 3, \ldots,(1 / 9) \div 3$. However, in $x 7$ the x may not be sideways.
2. Upside-down: Comments similar to those for sideways cube apply here. $x \div 3$ could be $\pm 1 \div 3, \pm 2 \div 3, \ldots, \pm 9 \div 3$.
3. Powers of the base: x, as 1 , may be any power of the base.
4. Multiple operations: x may be used multiple times in a Solution only if it represents an operation, not if it represents a digit.
5. Exponent: x 's are on the blue and green cubes. If blue or green exponent is called, an x may be used as an exponent without *.
6. Average: If x is used as +, it means average, not addition.
7. $A B+$: The Goal may be of the form $A B x$, with x representing + .
8. Base m : If x is used as a digit, it may be only $0,1,2, \ldots, m-1$. So in base eleven or twelve, x may represent $0,1,2, \ldots, 9$, * (ten), or in base twelve $\sqrt{ }$ (eleven).

EXERCISES

With x wild, write all values of each Goal. Use ... to indicate patterns.

1. $x 3$
2. $x x$
3. $x+5$
4. (base 8) $7 \div x$
5. (red exp.) 4×2 (red 2)
6. $($ pob $) x+3$
