FACTORIAL - II (EM only)

PRINCIPLE

The factorial variation works in combination with other variations.

Factorial in Combination with Other Variations

(a) Sideways \sim ! is not defined. However, ($\sim \times 8)!=4!=4 \times 3 \times 2=24$
(b) Upside down 2 ! is undefined. However, $(Z+6)!=4!=24$
(c) Multiple ops. Only two! may be used in a Solution since! is not on the cubes and therefore cannot appear in Required or Permitted to be used multiple times.
(d) Percent $\quad 5!-\quad 20=120 \%$ of $20=1.20 \times 20=24$
(e) Decimal pt. * as decimal point takes precedence over all other operations. So 4*3! may not be interpreted as $4 .(3!)$ or 4.6. (4*3! has no defined interpretation.)
(f) \# factors $x(6!)$ is not allowed since $6!$ is bigger than 200 . However $x(5!)=x 120=$ $x\left(2^{3} \times 3^{1} \times 5^{1}\right)=4 \times 2 \times 2=16$.
(g) Small. prime $x(6!)$ is not allowed since $6!$ is bigger than 200 . However $x(5!)=x 120=127$.
(h) E: 2-dig.num. In the Goal or a Solution, 12! $\div(10!)=$
$12 \times 11 \times 10 \times 9 \times 8 \times 7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1 \quad 12 \times 11 \times 10 \times 9 \times 8 \times 7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 4$
$10 \times 9 \times 8 \times 7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1=\quad 10 \times 9 \times 8 \times 7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 4=12 \times 11=132$
(i) El: 3-op. Sol. Each ! sign in a Solution counts as an operation sign. So the Solution $6!\div 2$! contains three operations.
(j) El: LCM $6!\sqrt{ }(5!)=720 \sqrt{ } 120=720$. In general, if $m>n$ (m and n whole numbers), then m ! $\sqrt{ } n!=m$!
(k) El: GCF $6!^{*}(5!)=720 * 120=120$. In general, if $m>n$ (m and n whole numbers), then $m!\sqrt{ } n!=n!$
(I) Mid: Mult.of k If $k=6$, then 3 !, 4 !, 5 !, and so on, all equal 0 since each of these factorials contains factors of 2 and 3 . If $k=7,7!, 8!, 9$!, and so on equal 0 since each contains 7 as a factor. In general, $k!,(k+1)!,(k+2)!$, and so on, all equal 0 . However, for non-prime values of k, factorials smaller than k ! may also be 0 . (m) Mid: Red ex. A Goal of 23 (red 3) may be interpreted as $2^{3!}$ or 2^{6}. In a Solution write $2^{(3!)}$ to prevent an opponent from interpreting the expression as $\left(2^{3}\right)$!

EXERCISES

Give the value of each interpretation of each expression. Assume factorial is in effect along with the variation listed.

1.	sideways	$(6 \times \sim)!$	2.	upside-down
3. decimal pt.	$4!\times 1^{*} 5$	4.	\# factors	$\times(4)!$
5. \# factors	$\times 3!$	6.	small. prime	$\times(4!)$
7. small. prime	$\times 3!$	8. average	$3!+(5!)$	
9. E: 2-dig.num.	$11!\div(8!)$	10. E: LCM	$5!\sqrt{ }(4!)$	
11. E: GCF	$4!*(6!)$	12. M: base 8	$12!\div(10!)$	
13. M: base 9	$11!\div[(5+4)!]$	14. M: red exp.	$33!$	

Middle: Give the smallest non-negative value of each factorial for the given multiple of k .
15. $k=8,9$!
16. $k=9,6$!
17. $k=7,7$!
18. $k=10,5!$
19. $k=11,43$!
20. $k=12,4$!

