# **EQUATIONS WORKSHEET**

# **R1**

# **REMAINDER (EM ONLY) - I**

#### PRINCIPLE

The Remainder variation says: " $A \cdot I \cdot B$  ( $\cdot I \cdot$  is a sideways  $\div$ ) equals the remainder when *A* is divided by *B*. *A* and *B* are positive integers, and *A* is less than or equal to 1000."

The phrase "*A* is less than or equal to 1000" does not mean you may use a three-digit number for *A* (unless Decimal Point also in play). It means the *value* of *A* can be no bigger than 1000.

## EXAMPLES

- **1.**  $15 \cdot 1 \cdot 2 = 1$  since 15 divided by 2 gives a quotient of 7 with remainder 1.
- **2.** (30 \* 2) + 5 = 0, the remainder when 900 is divided by 5.
- **3.**  $45 \pm 70 = 45$ , since 70 goes into 45 zero times with 45 remainder.
- **4.** (32 \* 2) + 6 is not allowed since 32\*2 is 1024, which is over the 1000 limit.
- 5. 6  $(32 \times 2) = 6$ . There is no limit on the value of *B*, the number after the  $1 \times 10^{-10}$  sign.
- **6.** (6 + 32) + 2 = 6 + 2 = 36.
- **7.** The Goal 5–9<sup>.1.</sup>13 has only one value.

**a.** 5 - (9 + 13) = 5 - 9 = -4.

**b.** (5-9) + 13 is not allowed since 5-9 is negative.

**8.** The Goal 5\*27<sup>1</sup><sup>4</sup> has only one value.

**a.** 5 \* (27 + 4) = 5 \* 3 = 125.

**b.** (5 \* 27) + 4 is not allowed since 5 \* 27 is far beyond the 1000 limit.

## EXERCISES

With Remainder, write all values of each Goal.

|     | <u>Goal</u>           | Values |     | <u>Goal</u> | Values |
|-----|-----------------------|--------|-----|-------------|--------|
| 1.  | 7 🕂 3                 |        | 2.  | 10 ·l· 4    |        |
| 3.  | 4 🕂 9                 |        | 4.  | 17 ·I· 6    |        |
| 5.  | 18 ·I· 5              |        | 6.  | 5 ·I· 18    |        |
| 7.  | 41 ·l· 2              |        | 8.  | 38 ·I· 2    |        |
| 9.  | 71 <sup>.</sup>   10  |        | 10. | 97   10     |        |
| 11. | 7+9·I·4               |        | 12. | 5*3·I·4     |        |
| 13. | 18 <sup>.</sup> ∣∙5x2 |        | 14. | 9·I·2+13    |        |
| 15. | 6-8.1.3               |        | 16. | 29·I·5-8    |        |
| 17. | 71 9 2                |        | 18. | 83   7   5  |        |
| 19. | 2*9·I·64              |        | 20. | 7*3·I·5     |        |
| 21. | 13–914                |        | 22. | 6*3·I·10    |        |
|     |                       |        |     |             |        |

# **EQUATIONS WORKSHEET**

#### 



# REMAINDER (EM ONLY) - II

## PRINCIPLE

The Remainder variation may be used with other variations.

#### **EXAMPLES**

- 1. <u>Upside-down</u>: Neither the number before the ·I· sign nor the number after the ·I· sign may be negative.
- **2.** <u>0 wild</u>: 15 + 0 = 0 (when 0 is 1, 3, or 5), 1 (when 0 is 2 or 7), 3 (when 0 is 4 or 6), 6 (when 0 is 9), or 7 (when 0 is 8).
- **3.** <u>Factorial</u>: 6! + 5 = 0 since 5 is one of the factors of 6! 6 + 5! = 6 since 5! = 120. 6! + 5! = 0 since 5! is included in 6!
- 4. <u>Multiple Operations</u>: Any ÷ cube may be used multiple times in the Solution. Each ÷ sign in the Solution may be either division or remainder. Middle: If 0 wild is also chosen, any 0 may be used multiple times as either ÷ or · ·.
- 5. <u>Three-operation Solution</u>: ··· counts as an operation.

## EXERCISES

With Remainder and the variation listed chosen, write all values of each Goal.

|                                                    | Variation      | <u>Goal</u>    | Values |  |  |  |
|----------------------------------------------------|----------------|----------------|--------|--|--|--|
| 1.                                                 | Sideways       | 7÷c√r⊡3        |        |  |  |  |
| 2.                                                 | 0 wild         | 24 ·I· 0       |        |  |  |  |
| 3.                                                 | Factorial      | 5   3          |        |  |  |  |
| 4.                                                 | Percent        | 9·I·25_^8      |        |  |  |  |
| 5.                                                 | Dec. Point     | 135*·I·7       |        |  |  |  |
| 6.                                                 | Dec. Point     | 999*·I·5       |        |  |  |  |
| <b>#7-8</b> are for Elementary Division only.      |                |                |        |  |  |  |
| 7.                                                 | Smallest Prime | x32·I·6        |        |  |  |  |
| 8.                                                 | Smallest Prime | x99·I·7        |        |  |  |  |
| <b>#9-10</b> are for Middle Division only.         |                |                |        |  |  |  |
| 9.                                                 | Red Exponent   | 72·I·5 (red 2) |        |  |  |  |
| 10.                                                | Powers of Base | 1·ŀ6           |        |  |  |  |
| MORE CHALLENGING EXERCISES – MIDDLE DIVISION       |                |                |        |  |  |  |
| In <b>#11-13</b> , x and y positive whole numbers. |                |                |        |  |  |  |

- **11.** If  $x \ge y$ , then x! + y! =\_\_\_\_\_
- **12.** If  $x \ge y$ , then x! + y =\_\_\_\_\_
- **13.** If x < y, then  $x \cdot | \cdot y! =$ \_\_\_\_\_

# **EQUATIONS WORKSHEET**

NAME \_\_\_\_\_



# REMAINDER (EM ONLY) - III

## PRINCIPLE

The Remainder variation may be used to pad Solutions.

### EXAMPLES

- Since 3 ⋅1⋅4 = 3, 3 ⋅1⋅5 = 3, 3 ⋅1⋅6 = 3, etc., you can pad Solutions like this. Equation: (7 x 4) + 3 = 31
   Padded Equation: (7 x 4) + (3 ⋅1⋅ \_\_) = 31 Any number bigger than 3 ⊥
- 2. The remainder when you divide any whole number by 1 is 0. So you can pad Solutions like this.
  Equation: (7 x 4) + 0 = 28
  Padded Equation: (7 x 4) + ( 1 · 1) = 28
- **3.** The remainder when you divide any positive whole number by itself is 0. Also, the remainder is 0 when the number before the 1 is a *multiple* of the number behind the 1. Use this fact to pad Solutions like this.

Equation:  $(7 \times 4) - 0 = 28$ 

Padded Equation: (7 x 4) – (\_\_\_ ·I· \_\_) = 28

Same number in both places or combinations like 4 1 2, 9 1 3, etc.

Any positive whole number  $\Box$ 

**4.** 9 • 8 = 1, 8 • 7 = 1, 7 • 6 = 1, etc. Use this pattern to pad Solutions like this. Equation: (7 x 4) x 1 = 28 Padded Equation: (7 x 4) x (8 • 7) = 28

One less than the number before the

### EXERCISES

With Remainder chosen, use **all** the Resources listed to make a Solution for each Goal.

|    | <u>Goal</u> | <u>Resources</u>  | Equation |
|----|-------------|-------------------|----------|
| 1. | 49          | 4569÷+x           |          |
| 2. | 35          | 1 3 4 5 9 + – x ÷ |          |
| 3. | 69          | 23589++÷*         |          |
| 4. | 54          | 36799+xx÷         |          |

## MORE CHALLENGING EXERCISES – MIDDLE DIVISION

In each case, *x* is a positive whole number.

- **5.**  $x \cdot | \cdot x =$  **6.**  $(x + 1) \cdot | \cdot x =$
- 7. x + 1 = 8.  $(x^{n}) + x =$  (*n* = positive whole #)

# SOLUTION KEY

## WORKSHEET R1

| 1.           | 1          | <b>12.</b> 1, 125    |  |
|--------------|------------|----------------------|--|
| 2.           | 2          | <b>13.</b> 6, 8      |  |
| 3.           | 4          | <b>14.</b> 9, 14     |  |
| 4.           | 5          | <b>15.</b> 15. 4     |  |
| 5.           | 3          | 164                  |  |
| 6.           | 5          | <b>17.</b> 0, 71     |  |
| 7.           | 1          | <b>18.</b> 1, 2      |  |
| 8.           | 0          | <b>19.</b> 0, 512    |  |
| 9.           | 1          | <b>20.</b> 3, 343    |  |
| 10           | .7         | <b>21.</b> 0, 12     |  |
| 11           | .0, 8      | <b>22.</b> 6, 216    |  |
| WORKSHEET R2 |            |                      |  |
| 1.           | 2          | <b>8.</b> 2, 3       |  |
| 2.           | 0, 3, 4, 6 | <b>9.</b> 2, 4       |  |
| 3.           | 0, 5, 40   | <b>10.</b> 1, 4      |  |
| 4.           | 0.72, 1    | <b>11</b> .0         |  |
| 5.           | 2          | <b>12.</b> 0         |  |
| 6.           | 4          | <b>13</b> . <i>x</i> |  |
| 7.           | 1, 3       |                      |  |

## WORKSHEET R3

- **1.**  $(5 \times 9) + (4 + 6)$  **2.**  $[(4 + 3) \times 5] - (9 + 1)$  **3.**  $[(8 \times 2) + 5] + (9 + 3)$  **4.**  $(6 \times 9) \times [(3 + 7) + 9]$  **5.** 0 **6.** 1 **7.** 0
- **8.** 0